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ABSTRACT
Open-ended textual exercises facilitate the comprehension of
problem-solving skills. Students can learn from their mistakes
when teachers provide individual feedback. However, courses
with hundreds of students cause a heavy workload for teachers:
providing individual feedback is mostly a manual, repetitive,
and time-consuming activity.

This paper presents CoFee, a machine learning approach de-
signed to suggest computer-aided feedback in open-ended
textual exercises. The approach uses topic modeling to split
student answers into text segments and language embeddings
to transform these segments. It then applies clustering to group
the text segments by similarity so that the same feedback can
be applied to all segments within the same cluster.

We implemented this approach in a reference implementa-
tion called Athene and integrated it into Artemis. We used
Athene to review 17 textual exercises in two large courses
at the Technical University of Munich with 2,300 registered
students and 53 teachers. On average, Athene suggested feed-
back for 26% of the submissions. Accordingly, 85% of these
suggestions were accepted by the teachers, 5% were extended
with a comment and then accepted, and 10% were changed.
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INTRODUCTION
The rise in student numbers in universities has led to an in-
crease in course management efforts, and made it challenging
to provide high-quality individual feedback to students [19].
Recent approaches, such as online platforms and live stream-
ing, allow teachers1 to cope and interact with a large amount
of students on an individual level, regardless of the respective
course size.

In particular, large university courses with hundreds of stu-
dents rely on teaching assistants to provide feedback on ex-
ercises, e.g., multiple-choice quizzes and textual exercises.
Multiple-choice quizzes are easy to assess, and tools are
broadly available in learning management systems (LMSs)
and for paper-based assessment. However, mastery of these
quizzes does not require problem-solving skills because they
typically target only lower cognitive skills, in particular, knowl-
edge recall and comprehension. Most quiz types include prede-
fined options and do not reflect work practices in industry. It is
difficult to create quizzes that stimulate higher cognitive skills,
such as problem-solving, which are important in computer
science [1, 32].

Open-ended textual exercises allow instructors to teach
problem-solving skills and allow students to improve their
knowledge. These exercises do not have a single correct solu-
tion, but rather allow answers within a particular solution space
which can be characterized by words and phrases. The search-
light theory of scientific knowledge [27] states that students
increase their knowledge through observations, especially ob-
servations that prove their assumptions wrong. Students profit
from having an individual feedback relationship with their
teachers [10]. Individual feedback and formative assessments
are essential elements in learning [11, 12]. Feedback on open-
ended exercises allows students to try out problem-solving and
to experience failure. Students need guidance in the form of
feedback in their learning activities to prevent misconceptions
[13].

1For this paper, we define teachers as both instructors and teaching
assistants (see Figure 1). Instructors are employees of the university
such as professors, lecturers, and doctoral candidates. Teaching
assistants are experienced students who have passed the same course
previously with a good grade and who are motivated to help in the
teaching process. Some universities also use the term “tutor” to refer
to a teaching assistant.

https://doi.org/10.1145/3430895.3460135
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Figure 1. Use case diagram of the Athene and Artemis system. Students
and teachers interact with the system. Teachers are instructors, employ-
ees of the university, or teaching assistants, who are previous students
hired to assist in teaching.

However, textual exercises lead to greater variability because
students need to formulate individual answers to problems.
This results in high manual effort when reviewing students’
answers. Assuring consistent feedback is difficult with a large
number of teaching assistants. In this paper, we present an ap-
proach for computer-aided feedback for textual exercises that
addresses these challenges. We implemented the approach in
an open-source reference implementation, used it in multiple
exercises, and evaluated its effects on the learning experience
of students. In particular, we investigated the following re-
search questions (RQ):

RQ1 Coverage: How much feedback can be automatically
suggested?

RQ2 Accuracy: How accurate is the suggested feedback?

RQ3 Quality: How do students perceive the quality of the
automatically suggested feedback?

The paper is organized as follows: Section 2 describes the
background of this work which consists of machine learning
concepts, in particular language models. In Section 3, we show
similar approaches and relate them to the approach presented
in this paper. Section 4 presents the approach computer-aided
feedback for textual exercises (CoFee) based on supervised
learning to deal with the greater variability in the student
answers. Language embeddings and clustering are used to pro-
vide individual feedback based on similarity. Section 5 shows
the open-source reference implementation Athene2 which is
integrated into the open-source LMS Artemis3. Section 6 de-
scribes the courses in which the approach was used, shows
the study design of the empirical evaluation with respect to
Bloom’s revised taxonomy [2], presents results and limitations,
and discusses the findings. Section 7 concludes the paper with
its main contributions and future work.

BACKGROUND: LANGUAGE MODELS
Assessing text submissions automatically requires comparing
segments of those submissions and identifying similar pieces

2Athene: https://github.com/ls1intum/Athene
3Artemis: https://github.com/ls1intum/Artemis

of text. Therefore, we need a measurable abstraction of a texts
meaning as an intermediate representation. This paper relies
on existing approaches and techniques from the domain of
natural language processing (NLP), most notably language
models and word embeddings, to convert a piece of text into
a comparable format. Student answers can contain unknown
words, incorrect use of grammar and punctuation, and false
statements.

Word embedding is a feature learning technique in NLP, where
words or phrases from the vocabulary are mapped to vectors of
real numbers (each word is associated with a point in a vector
space) [21]. The feature vector represents different aspects of
the word and consequently, words that have the same mean-
ing are assigned similar vector representations. Additionally,
word embeddings are capable of capturing word analogies
by examining various dimensions of the differences between
word vectors [24]. For example, the analogy “king is to queen
as man is to woman” should be encoded in the vector space
by the vector equation king − queen = man − woman.

The distributed representation is learned based on the usage
of the words. This allows words that are used in similar con-
texts to have similar representations, naturally capturing their
meaning. ELMo [26] is a word embedding constructed as a
task-specific combination of the intermediate layer represen-
tations in a bidirectional language model (biLM). It models
complex characteristics of words-use in the language dictated
by the syntax and semantics. It also captures how these uses
vary across linguistic contexts, which is important for address-
ing polysemy in natural languages.

In a deep language model (LM), the higher-level long short
term memory (LSTM) states are shown to capture context-
dependent aspects of word meaning while lower-level states
model aspects of the syntax. By constructing a representation
out of all the layers of the LM, ELMo is able to capture both
characteristics of the language. ELMo representations have
three main characteristics that allow them to achieve state-
of-the-art results in most common NLP downstream tasks.
First, ELMo representations are contextual: the representa-
tion for each word depends on the entire context in which it
is used. They are also deep: the word representations com-
bine all layers of a deep, pre-trained language model neural
network. Finally, ELMo representations are purely charac-
ter based, allowing the network to use morphological clues
to form robust representations for out-of-vocabulary tokens,
unseen in training.

RELATED WORK
Automated essay scoring (AES) computes scores on written
solutions based on previous submissions. AES systems require
a perfect solution to be available up front [23, 31]. They pri-
marily consider the distance to a perfect solution to determine
the grade. Feedback is not the focus. Manual clustering and
shared grading are concepts used in research [25] and com-
mercial tools (i.e., Gradescope). Managing clusters is hard at
scale, communicating the exact differences between clusters
between many graders.

https://github.com/ls1intum/Athene
https://github.com/ls1intum/Artemis


Atenea is a computer-assisted assessment system for scoring
short answers in computer science [25] and is integrated into
a web-based application. Atenea uses a database of questions
with a correct sample solution for each, either written by a
teacher or taken from a highly graded student’s answer. When
a student accesses Atenea, a random question from this pool is
asked and compared to the given sample solution by utilizing
a hybrid for syntax as well as semantic similarity. The system
works by combining latent semantic analysis (LSA) and a mod-
ified bilingual evaluation understudy (BLEU) algorithm, with
the hypothesis that syntax and semantics complement each
other naturally. The combination of both NLP tools always
performs better (with a higher hit rate) than their individual
parts, with the authors believing that combinations of syntacti-
cal and semantical analysis can lead to even greater results for
automatic text assessment.

Atenea compares student answers to a set of predefined an-
swers. The grade is determined by its similarity to these
predefined answers. This approach is limited to exercises with
a narrow answer space where possible answers are known
beforehand. A high variability in answers requires a large set
of predefined answers, which limits the applicability of the
system. The focus of the Atenea system is grading, whereas
Athene is primarily focused on individual feedback. Athene
does not require a predefined solution but collects knowledge
on correct and incorrect solutions during the manual assess-
ment. The evaluation of the Atenea authors focuses on a
comparison of NLP techniques in the grading context and is
based on a dataset. We evaluate Athene by using it in multiple
courses and measuring its performance.

Powergrading is an automatic assessment approach [3]. In-
stead of solely focusing on providing a numerical score or a
right or wrong grade, Powergrading tries to justify a certain
given grade by providing feedback in the form of a comment
as to why an answer is right or wrong, similar to how a teacher
would do it in a classroom setting. Basu et al. propose a sys-
tem, that clusters similar answers to a question so that teachers
can “divide and conquer” the correction process by assigning
a whole cluster with the same score and comment, therefore
reducing the correction time significantly. Clustering answers
to a question should happen based on a distance function,
which is composed of different features and tries to learn a
similarity metric between two students’ answers automatically.
Some of the implemented and used features that are weighted
in developing this distance function used for clustering are,
e.g., the difference in length between two answers, the term
frequency-inverse document frequency (TF-IDF)4 similarity
of words, or the LSA vectorial score based on the entirety of
Wikipedia as a training text corpus. The authors have tested
their implementation with test data from the United States
Citizenship Exam in 2012 with 697 examinees and concluded
that around 97% of all submissions can be grouped into similar
clusters so that teachers would only have to provide feedback
for a single cluster and would still be able to reach and correct
multiple submissions at once, therefore reducing assessment
time significantly [3].

4TF-IDF: An information extraction statistic which indicates how
significant a word is to a document [28].

Powergrading is focused on short-answer grading, where a
typical answer does not exceed two sentences. Athene is not
limited to a certain answer length and uses segmentation to
work with multiple sentences or paragraphs. Similar to Power-
grading, Athene groups segments into clusters. Both systems
assume hierarchical cluster structures. Powergrading allows
teachers to grade clusters rather than submissions, whereas
Athene will use the cluster structure to suggest feedback for
following assessments.

Gradescope is a system geared toward the assessment of
handwritten homework and exam exercises [30] by scanning
paper-based work. Teachers review the submissions online.
Gradescope allows the teacher to dynamically create grading
rubrics at the assessment time. For the assessment, teachers
can group similar submissions manually for shared grading or
relay on suggested groups.5

Athene follows a similar idea by sharing feedback with groups
of answers; however, Athene groups individual segments,
whereas Gradescope groups entire submissions. Gradescope
allows the grader to grade multiple submissions as one, similar
to Powergrading, whereas Athene shares individual feedback
elements across multiple submissions. Athene requires teach-
ers to inspect every submission and supports by suggesting
feedback items. Neither system requires a training dataset
of previously assessed answers. For exercises with a limited
answer spectrum, Gradescope does allow the grader to assess
several submissions efficiently as it reduces the number of so-
lutions to grade. However, for exercises with high variability
in answers (e.g., when asking for examples), this approach is
more limited as more groups with less elements need to be
reviewed.

APPROACH: COMPUTER-AIDED FEEDBACK (COFEE)
CoFee uses supervised machine learning to learn correct an-
swers and related feedback. Figure 2 shows the main workflow
how CoFee can automatically propose computer-aided feed-
back to students’ answers. CoFee learns which answers to
an exercise are correct and which are incorrect. For further
submissions, the learning platform can automatically generate
suggestions for similar answers or even evaluate the answers
fully automatically. In doing so, the learning platform uses the
knowledge of previous assessments by lecturers. The more
students participate in an exercise, the more knowledge is
generated and the better feedback the learning platform can
suggest.

Figure 3 shows the details of the activity “preprocess answers”
shown in Figure 2 and represents the basis for the three ob-
jectives mentioned above. The system analyzes incoming text
(responses) using NLP, divides them into text segments, and
uses them to create text clusters with similar text segments
from different responses. This is done using a combination of
segmentations and linguistic embeddings, in particular deeply
contextualized word representations (ELMo). This allows for
an understanding students’ responses and for the generation
of individualized feedback. In this way, a learning platform
can automatically reuse manual feedback for contributions

5https://gradescope.com
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Figure 2. Workflow of automatic assessment of submissions to textual exercises based on the manual feedback of teachers. CoFee analyzes manual
assessments and generates knowledge for the suggestion of computer-aided (automatic) feedback (UML activity diagram).

Segmentation

Language Embedding

 Answer

ELMo

Remove 
stop words Lemmatize Extract 

keywords
Segment 

answers into 
text segments

Text segment

Clustering

Calculate 
distance matrix

Compute
HDBSCAN 
clustering

VectorText Segment 
Cluster

Figure 3. Detailed overview of the machine learning activities as part of the “preprocess answers” activity in Figure 2. These are used to extract text
segments and build text clusters for scoring and similarity analysis (UML activity diagram).

from different students. This can reduce the workload for
teachers and increase the consistency and quality of feedback
to improve students’ understanding.

The goal is to increase the quality and quantity of the feedback
provided to students while decreasing the overall assessment
time. CoFee integrates into existing learning platforms that
need to provide an interface for students to submit their textual
answers. We utilize a segment-based feedback concept [5],
requiring assessors to provide feedback and score in relation
to a segment of student’s answer, resulting in relatable and
reusable feedback elements.

CoFee trains its assessment model with every feedback ele-
ment and thereby becomes more accurate with every new feed-
back element. After the assessment process, the system can
detect conflicting assessments in both comments and scores.
Therefore, CoFee computes the similarity among feedback
comments. We claim that the distance between two text seg-
ments should be proportional to the distance between the feed-
back comments. If this relation is violated, CoFee prompts the
teacher to review the pair of submissions and allows them to
update the assessment as needed. The learning platform may
only release the feedback to students after the teachers have
the chance to resolve inconsistencies.

Compared to existing work, our system segments and clusters
student solutions automatically. By training the system during
the assessment process, we do away with the need for a refer-
ence dataset before the assessment. Furthermore, by training
with highly and lowly scored solutions, we maintain a dataset
to provide helpful feedback comments to support the learning
process. Dynamically collecting the dataset during assessment
keeps the system independent of any domain and allows for
use of the system with new exercises to incorporate the latest
knowledge into teaching.

REFERENCE IMPLEMENTATION (ATHENE)
We implemented CoFee in a reference implementation called
Athene [4] that is integrated into the learning platform Artemis
[15]. After the exercise deadline, Artemis sends the students’
answers to Athene for processing. Athene will preprocess
the answers before the assessment begins and will identify
segments suitable for the same feedback. Figure 3 depicts the
preprocessing activities. This represents the basis for the three
objectives mentioned above. The system analyzes incoming
student answers using NLP, divides them into text segments,
and uses them to create text clusters with similar text segments
from different responses. Figure 4 depicts the top-level design
of the system which consists of three steps: segmentation,
language embedding and clustering.



First, Athene analyzes the answers to identify segments [6, 7].
Therefore, Athene identifies common topics described in the
answers from all students. A topic is represented by a keyword.
To identify the important topics for an exercise, Athene counts
the occurrences of lemmatized words across all students and
selects the 10 most common words [7]. Within each student
answer, Athene will break down all submissions into clauses.
Adjacent clauses that share the same topic, represented by the
use of a keyword and absence of a new keyword, are merged
to form a segment. If a new keyword appears an a following
clause, we identify a topic shift and start a new segment. This
results in a set of topically coherent segments.

Second, Athene uses an ELMo model to convert each segment
to vector form. ELMo vectors have 1,024 dimensions rep-
resenting the information extracted from the segment. The
vector representation allows for a comparison of segments and
for the identification of similarities. Athene uses a pre-trained
ELMo model [26] based on a dataset consisting of 5.5B tokens
from Wikipedia and news articles.6

Third, Athene employs the Hierarchical Density-Based Spatial
Clustering (HDBSCAN) clustering algorithm [22] to identify
classes of similar text segments. Within a cluster, Athene
shares manually created feedback as suggestions. The hier-
archical clustering algorithm allows for a determination of
the required number of clusters dynamically. Further, the hi-
erarchical structure is used to dynamically narrow or widen
the search radius depending on the availability of feedback.
Narrow clusters provide more accurate feedback on the one
side; however, they also limit the possible coverage. Larger
clusters increase the possibility to find existing feedback to
compose a suggestion; however, they also increase the risk of
false feedback.

During the manual assessment, Athene sorts submissions so
that it priorities submissions with the highest effect on auto-
mated grading. Submissions with several segments in clusters
without feedback are prioritized, maximizing the possible cov-
erage for automatic feedback suggestions. For each segment,
Athene searches their respective clusters for existing feedback
and suggests the closest feedback. Furthermore, credit points
associated with feedback are used to prioritize based on the
clusters’ credit average. Athene’s automatic feedback sugges-
tions are displayed to teachers within Artemis as part of the
review interface [5], as depicted in Figure 5. Teachers can
add additional feedback to unreviewed parts of the student
solution. They can either approve of the feedback suggestions
or update them as they see fit.

EVALUATION
After several teachers used Athene in initial experiments in
smaller courses with around 500 students, they found anecdo-
tal evidence that the system improves the quantity and quality
of feedback. The next step was to evaluate the approach in
multiple exercises in the course Introduction to Software Engi-
neering (SE1) with 1,800 students and 49 teaching assistants
and in a second course Networks for Monetary Transactions.
In this section, we describe the two courses and the study

6AllenNLP – ELMo: https://allennlp.org/elmo

Figure 4. Top-level design of Athene, which is decomposed into three
subsystems for segmentation, language embedding, and clustering and
offers an API to be used in existing LMS (UML component diagram).

Figure 5. Example of the teacher interface: Athene presents a feedback
suggestion for the first text segment with a feedback comment and a
score.

design of the evaluation. We show the results of the usage of
Athene and discuss the findings, implications, and limitations.

Courses
The course SE1 is an introductory software engineering course,
with around 1,800 registered students who are mainly com-
puter science bachelor’s students in their second semester. Stu-
dents with computer science as a minor can also enroll in the
course. The course covers software engineering concepts, such
as requirements analysis, system and object design, testing,
lifecycles, configuration management, and project manage-
ment and covers UML modeling [19]. To participate in the
course, students need to have fundamental programming expe-
rience (e.g., CS1). The instructors use constructive alignment
[8] to align the teaching concepts and exercises with the course
objectives. For each lecture, they define learning goals based
on six cognitive processes in Bloom’s revised taxonomy [2].
The course focuses on higher cognitive processes: students
apply the concepts in concrete exercises.

Following an interactive learning approach, SE1 teaches soft-
ware engineering concepts with multiple, small iterations of
theory, example, exercise, solution and reflection [16]. It
utilizes exercises to foster student participation [17] and to
motivate the students to attend the lectures [18]. The course
involves different kinds of exercises:

1. Lecture exercises as part of the (virtual) lectures
2. Group exercises solved in small ad hoc groups
3. Homework exercises to be solved throughout the week

individually

https://allennlp.org/elmo


4. Team exercises to be solved in a team in five 2-week periods
5. Exam exercises to assess the students’ knowledge after the

course has finished in multiple variants

Students were asked to submit their solutions to all exercises
but group exercises to Artemis to receive an assessment with
feedback and points. The students could gain bonus points
for the final exam when participating in the exercises. To
train software engineering and problem-solving skills, the
instructors utilize programming, modeling, textual, and quiz
exercises in the course. Automatic assessment suggestions
based on Athene have been enabled for 11 textual homework
exercises and six textual exam exercises.

The course Networks for Monetary Transactions has the learn-
ing goals to understand and assess the fundamentals, archi-
tecture, and security of domestic and international payment
networks and their legal frameworks. Around 500 students
participated. The teachers used Artemis to conduct an online
exam during the COVID-19 pandemic. The exam consisted
of 11 quiz exercises and three text exercises. Automatic as-
sessment suggestions based on Athene were enabled for one
textual exam exercise: IT-Attacks.

Bloom created the taxonomy of educational objectives, defin-
ing six categories: Knowledge, Comprehension, Application,
Analysis, Synthesis, and Evaluation [9]. The revised taxonomy
shifts the focus from static educational objectives toward a
classification of cognitive processes students encounter when
solving exercises [2]. The exercises conducted as part of the
evaluation can be classified to train the cognitive processes
Remember, Understand, but Apply, and Analyze (see Figure 6).

Table 1 lists the textual exercises and includes the cognitive
process (as a category) that receives the most training in terms
of the revised taxonomy. Some exercises such as H09E02
and H10E01 facilitate understanding by asking student to
explain concepts. H10E01, e.g., states: “Name and explain
similarities and differences between the Unified Process and
Scrum in your own words”. Other exercises such as Exam 3
focus on the application of knowledge. Students need to apply
their requirements elicitation skills in order to create use case
descriptions based on a given problem statement.

Study Design
Figure 7 shows the study design of the evaluation that was
instantiated for each exercise in which Athene was used for
grading. The teacher defines the exercise in Artemis with a
problem statement, grading criteria, example solutions, and a
due date. The students can insert their solution in plain text
on Artemis. After the due date, Artemis sends all student
answers to Athene to preprocess the answers as described in
the Approach section. The teachers can start reviewing the
student answers as soon as Athene completes the preparation
and stores the text clusters. For every student answer, the
teachers create a review consisting of multiple feedback items.
During the review phase, the teachers used a chat room to
discuss the grading criteria as needed.

Every review can either be computer-aided, if at least one feed-
back item is suggested by the system, or manual. Furthermore,

ProceduralKnowledge

StaticKnowledge

«abstract»
CognitiveProcess

Create

Evaluate

Analyze

Apply

Understand

Remember

Figure 6. Exercises in the evaluation assess different cognitive processes.
This taxonomy, based on the revised Bloom’s taxonomy [2], depicts the
hierarchy of skills. Exercises test static knowledge by testing the remember
and understand skills but also apply and analyze, e.g., by identifying design
issues from a system.

Athene stores intermediate versions of all feedback items to
evaluate how teachers work with feedback suggestions.

After the teachers completed the review, we retrieved the clas-
sification of the reviews from the Artemis database using SQL
queries. Two researchers verified the correctness of the queries.
We collected the statistics on the feedback items from Athene.
We inserted the measurements in a spreadsheet for further
analysis and graphing. Two researchers reviewed the results
for consistency and plausibility and took several samples to
check individual feedback entries.

Results
The presentation of the results is based on the research ques-
tions stated at the beginning of the paper on the coverage,
accuracy and quality of the approach.

Review Coverage
First, we classify the reviews into two categories: manual and
computer-aided. A review is considered computer-aided, if at
least one feedback item was suggested by Athene. Figure 8
depicts the classification of the reviews. On average, 26%
of all reviews were computer-aided. The system performed
best in exercise Exam 1, with 70% computer-aided reviews.
Exercises Exam 4 and Exam 6 have the least coverage, with
2% and 8% computer-aided reviews, respectively. However,
Athene was disabled for exercise Exam 4 after a few assess-
ments.

Finding 1: Coverage: Athene can cover up to 70% of reviews
with feedback suggestions without previous training data or a
predefined solution.



Exercise Title Category
H04E01 Coupling and Cohesion Understand

H04E02 Analysis Models &
System Design Analyze

H04E03 Design Goal Trade-offs Apply

H05E02 Centralized vs Decentralized
Designs Understand

H06E03 Specification & Implementation
Inheritance Apply

H06E04 Inheritance vs. Delegation Understand
H07E03 MVC & Observer Pattern Understand

H09E01 Advantages and Disadvantages
of Scrum Understand

H09E02 Unified Process and Scrum Understand
H10E01 Problems using Git Understand

H10E02 Merge Conflicts &
Best Practices Understand

Exam 1 Requirements Apply
Exam 2 Visionary Scenarios Apply
Exam 3 Use Cases Apply
Exam 4 Access Control Apply
Exam 5 Design Goal Trade-offs Apply

Exam 6 Centralized vs. Decentralized
Control Apply

Exam 7 IT-Attacks Remember
Table 1. Homework and exam textual exercises and their categorization
following Bloom’s revised taxonomy [2] used in the evaluation.

Feedback Accuracy
Second, we classified feedback items based on the interme-
diate versions collected during the review process. Feedback
items can be classified as follows:

1. A feedback suggestion that remains unchanged is classified
as automatic.

2. For changed suggestions, Athene computes the Levenshtein
distance [20] between feedback comments. Athene clas-
sifies a changed feedback as a typo fix for a Levenshtein
distance > 0.9.

3. Athene uses the longest common substring length and the
Jaro–Winkler distance [33] to recognize feedback sugges-
tions with a manual extended comment.

4. Feedback not classified in these metrics is considered as
changed.

We analyzed the teachers’ assessment work for two homework
and seven exam exercises. The results depicted in Figure 9
show that on average, 85% of computer-aided feedback com-
ment suggestions remained unchanged in their final assess-
ment or only had minor modifications, such as corrections to
typing mistakes. Furthermore, 5% of suggested comments
were extended with additional feedback at the end of the sug-
gestion to provide more details for the student. The remaining
10% of comments were changed. In these cases, the comment
was either rewritten from scratch or was heavily revised.

Finding 2: Accuracy: On average, 85% of the feedback
suggestions are accurate and can be published to students
without modification.

Researcher StudentTeacher

Define exercise

Submit answer

Run Athene system

Review
feedback suggestions

Rate feedback

Collect assessments

Classify feedback

Evaluate results

Accept

Change

Discard

Figure 7. Research approach depicted with the involved actors and flow
of events (UML activity diagram).

Perceived Quality
Third, we asked students to rate their received feedback on a
5-star scale. The students rated a total of 396 reviews out of
10,240 total reviews done by the teachers. Artemis presents
the rating input underneath the feedback and asks, “How useful
is the feedback for you?” Figure 10 depicts the distribution by
star rating. In the study, 85% of the ratings were either 1-star
or 5-star ratings. Students with computer-aided feedback were
more likely to give a 5-star rating (72%) when compared to
students who received manual feedback (62%). On the same
page, computer-aided feedback received 1-star ratings less
often (14%) than manual feedback (25%). Students giving
a 5-star rating on average (92% and 89%, respectively) had
better scores than students giving 1-star ratings (69% and 66%,
respectively).

Finding 3: Quality: The computer-aided feedback in Athene
has at least the same quality as manual feedback.

Limitations
This section discusses threats to the trustworthiness of the
presented results, and whether the results are biased based
on the researchers’ subjective point of view. We distinguish
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Figure 8. Exercises with their assessment ratios. Computer-aided reviews
received automated grading suggestions which were reviewed by a teacher.
On average, 26% reviews were computer-aided.

between three aspects of validity: internal validity, external
validity, and construct validity [29].

Internal Validity: The accuracy of the feedback suggestions is
measured by the acceptance of the teacher. A second review
from a control teacher would allow for a more accurate mea-
surement of accuracy. The teacher might be biased to confirm
a feedback suggestion as it requires less effort than providing a
new comment. We noticed that most teachers took the review
of the automatic feedback suggestions seriously, but we can-
not guarantee that some of the 49 involved teaching assistants
failed to fully review the automatic feedback suggestions.

Two of the authors of this paper have been involved in teach-
ing the course SE1 and might have influenced the empirical
evaluation. However, we tried to clearly separate the research
and instructor perspective. Two additional instructors have
been involved in the course SE1 who are not authors of this
paper, and the third author of the paper reviewed the results
carefully without being involved in the course. In addition,
we observed similar results in the second course, which was
taught by an independent instructor who was not involved in
the research.

External Validity: Most analyzed exercises have been in the
domain of software engineering and computer science in the
same university. While we believe that the approach is gen-
eralizable for other domains, we have not shown this in this
study.
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Figure 9. On average, 85% of computer-aided feedback comments re-
mained unchanged (green) or only included minor typo fixes (blue). Fur-
thermore, 5% were extended (yellow), and 10% were changed (red).

Construct Validity: The validity of the ratings might be af-
fected by the wording of the question and by the score that the
students received. Students with a higher score are typically
more satisfied and less likely to complain about the quality of
the feedback. Therefore, a good rating does not necessarily
mean that the feedback had a good quality. Another limitation
could be the fact that students like the approach of getting
feedback. The ratings measure the perceived quality which is
subjective. We can only infer the quality based on the ratings.
Therefore, we consider Finding 3 on the quality of the ratings
as anecdotal evidence.

Discussion
The review coverage of Athene is higher for exercises that do
not ask for examples, but rather require students to work based
on a given example. In the exercises Exam 1 and Exam 3,
students were asked to extract requirements or use cases from
a given problem statement. In those exercises, the coverage
was above the average with 70% and 50%, respectively. These
questions still require students to apply problem-solving skills,
but limit the variability of the answers. This leads to more
similar answers and more reusable feedback.

Exercises asking for examples, such as the SE1 homework ex-
ercises, have lower review coverage of between 17% and 36%.
This may be due to the increased variability of answers with
different examples. As Athene tries to find similar text seg-
ments, it is more difficult to find a group with shared segments
as students can describe all possible examples. Therefore, it is
less likely to find reusable feedback among students.

Athene reuses reviews from teachers. The quality of the feed-
back suggestions depends on the quality of the manual feed-
back provided during the teacher reviews. If teachers provide
incorrect manual feedback, Athene will not be able to pro-
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Figure 10. All ratings for SE1 homework (HXX) exercises by star rating.
In this figure, ratings are grouped by the assessment type Manual (n =
325) or Computer-aided (n = 71). The average score in percent is depicted
per rating and assessment type. In the study, 396 out of 10,240 reviews
were rated by students.

vide correct feedback suggestions. In the example of SE1,
the teachers who review the submission consist primarily of
teaching assistants, who have limited experience in grading or
providing feedback.

Nevertheless, the approach can improve the review process
as it allows instructors to handle larger amounts of reviews or
to inspect examples. Other systems presented in the Related
Work section suggest comparing answers only with a sample
solution provided by an instructor [25], thus reducing the vari-
ability in the solution space, which might limit the creativity
of the students. However, creativity is an important aspect in
software engineering education [14].

CONCLUSION
This paper presents three main contributions:

1. The machine-learning based approach CoFee was pre-
sented to suggest feedback for textual exercises. The ap-
proach is based on segmentation and similarity-based clus-
tering. It reuses feedback on segments within the same
cluster and learns which aspects of student answers are
correct during the assessment.

2. Athene, a reference implementation of CoFee, using the
ELMo language model and the HDBSCAN clustering algo-
rithm was presented. Athene is integrated into Artemis and
published as open-source software under the MIT license.7

3. An empirical evaluation of Athene in two courses with
2,300 students and 53 teachers in 17 textual exercises was
conducted. The results of the quantitative evaluation in
these exercises show that Athene can suggest up to 70%
of the feedback with an average accuracy of 85%. Ratings
provide first indications that the quality improves when
compared to purely manual assessments.

The evaluation also shows that these numbers depend on the
type of the textual exercise and on the variability of the pos-
sible solutions. A higher variance in correct solutions leads

7Athene: https://github.com/ls1intum/Athene

to less coverage because of fewer similarities in the student
answers.

Athene does not require training data before the reviewing
process to learn correct answers and feedback suggestions.
Instead, it collects knowledge during the assessment. This
incremental process allows instructors to change or introduce
new exercises as needed, preventing students from submitting
solutions from previous years. However, when reusing past
exercises, Athene could profit from additional knowledge cap-
tured in these reviews. Future work needs to evaluate whether
training data from the same exercise in previous years can
improve the coverage or accuracy of feedback suggestions.
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